- Home
- Events
Filter
Sort
-
-
Filter Clear filters
-
-
Start
- -
-
-
-
Content provider
- University of Cambridge Bioinformatics Training5
- Show N_FILTERS more
-
-
-
Keyword
- HDRUK
- ISCB9
- OtherEvents8
- UniProt: The Universal Protein Resource5
- Proteins (proteins)4
- PRIDE: The Proteomics Identifications Database3
- IntAct Molecular Interaction Database2
- Oncology2
- Reactome pathways database2
- drugdiscovery2
- proteomics2
- toxicology2
- BioImage Archive1
- Biotherapeutics1
- COVID-191
- CellBiology1
- ChemicalBiology1
- EeLP1
- Ensembl Plants1
- EuBIC1
- European Nucleotide Archive1
- European Variation Archive1
- Expression Atlas1
- Formulation1
- Galaxy1
- Germinate1
- Gramene1
- ISCBEvent1
- ISCBEvents1
- InterPro1
- MGnify1
- Mass spectrometry1
- Medicine1
- MetaboLights: Metabolomics repository and reference database1
- PersonalizedMedicine1
- Programmatic access1
- Protein annotation1
- Protein families1
- Protein function1
- Protein functional analysis1
- Protein sequences1
- Proteomics1
- Purification1
- Quantitative proteomics1
- SARS-CoV-21
- UniProtKB1
- Winter School1
- bioinformatics1
- eLearning1
- mass spectrometry1
- neurobiology1
- protein annotation1
- protein function1
- quantitative proteomics1
- toxicogenomics1
- training1
- Show N_FILTERS more
-
-
-
Scientific topic
- Metaproteomics
- Bioinformatics346
- Data rendering147
- Data visualisation147
- Data mining110
- Pattern recognition110
- Aerobiology86
- Behavioural biology86
- Biological rhythms86
- Biological science86
- Biology86
- Chronobiology86
- Cryobiology86
- Reproductive biology86
- Functional genomics55
- Comparative transcriptomics50
- Transcriptome50
- Transcriptomics50
- Active learning22
- Ensembl learning22
- Kernel methods22
- Knowledge representation22
- Machine learning22
- Neural networks22
- Recommender system22
- Reinforcement learning22
- Supervised learning22
- Unsupervised learning22
- Python18
- Python program18
- Python script18
- py18
- Coding RNA15
- EST15
- Exons15
- Fusion genes15
- Fusion transcripts15
- Gene features15
- Gene structure15
- Gene transcript features15
- Gene transcripts15
- Introns15
- PolyA signal15
- PolyA site15
- Signal peptide coding sequence15
- Transit peptide coding sequence15
- cDNA15
- mRNA15
- mRNA features15
- Bioimaging14
- Biological imaging14
- Phylogenetics14
- ChIP-exo12
- ChIP-seq12
- ChIP-sequencing12
- Chip Seq12
- Chip sequencing12
- Chip-sequencing12
- DNA methylation9
- Epigenetics9
- Exomes9
- Genome annotation9
- Genomes9
- Genomics9
- Histone modification9
- Methylation profiles9
- Personal genomics9
- Synthetic genomics9
- Viral genomics9
- Whole genomes9
- Epigenomics8
- Exometabolomics7
- LC-MS-based metabolomics7
- MS-based metabolomics7
- MS-based targeted metabolomics7
- MS-based untargeted metabolomics7
- Mass spectrometry-based metabolomics7
- Metabolites7
- Metabolome7
- Metabolomics7
- Metabonomics7
- NMR-based metabolomics7
- Bottom-up proteomics5
- Discovery proteomics5
- MS-based targeted proteomics5
- MS-based untargeted proteomics5
- Peptide identification5
- Protein and peptide identification5
- Protein structure5
- Protein structure analysis5
- Protein tertiary structure5
- Proteomics5
- Quantitative proteomics5
- Targeted proteomics5
- Top-down proteomics5
- AMR4
- Antibiotic resistance (ABR)4
- Antifungal resistance4
- Antimicrobial resistance4
- Antiprotozoal resistance4
- Show N_FILTERS more
-
-
-
Event type
- Workshops and courses5
- Show N_FILTERS more
-
-
-
Country
- United Kingdom5
- Show N_FILTERS more
-
-
-
Target audience
- but not essential as we will walk through a MS typical experiment and data as part of learning about the tools.5
- Familiarity with mass spectrometry or proteomics in general is desirable4
- The course is targeted to either proteomics practitioners or data analysts/bioinformaticians that would like to learn how to use R to analyse proteomics data.4
- Graduate students1
- Institutions and other external Institutions or individuals1
- Postdocs and Staff members from the University of Cambridge1
- The course is targeted to either proteomics practitioners or data analysts/bioinformaticians that would like to learn how to use R to analyse proteomics data. Familiarity with mass spectrometry or proteomics in general is desirable1
- Show N_FILTERS more
-
- Only show online events
- Hide past events
- Show disabled events